The synthesis and characterisation of R_3PXCN [R = 2,4,6-(CH₃O)₃- C_6H_2 , 2,6-(CH₃O)₂ C_6H_3 , NCCH₂CH₂, C_6H_{11} or PhCH₂; X = Br or I] in the solid state and in solution

DALTON FULL PAPER

Stephen M. Godfrey, Charles A. McAuliffe, Robin G. Pritchard and Joanne M. Sheffield

Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester, UK M60 1QD

The compounds R_3PXCN [$R = 2,4,6-(CH_3O)_3C_6H_2$, $2,6-(CH_3O)_2C_6H_3$, $NCCH_2CH_2$, C_6H_{11} or $PhCH_2$; X = Br or I] have been synthesized and characterised by elemental analysis, X-ray powder diffraction and infrared and ^{31}P -{H} NMR spectroscopy. In the solid state and in solution the compounds exist as mixtures of the ionic compounds [R_3PCN]X and [R_3PX]CN with no evidence for the species R_3PX_2 or $R_3P(CN)_2$. Infrared studies indicate the presence of both covalently bound and ionic cyanide. The ^{31}P -{H} NMR studies show that in CDCl $_3$ the compounds exist predominantly as [R_3PCN]X, although a minor component due to [R_3PX]CN is also observed in ca. 10:1 ratios. These novel compounds are discussed with reference to the analogous R_3PX_2 compounds. An X-ray crystallographic study of [$\{2,4,6-(CH_3O)_3C_6H_2\}_3PCN$]I reveals an ionic structure with no long cation—anion interactions. In contrast, the crystal structure of [$2,4,6-(CH_3O)_3C_6H_2$] $_3PI_2$ represents a further example of the molecular four-co-ordinate charge-transfer structure R_3P -I-I; d(I-I) for this compound, 3.3394(5) Å, is rather short considering the very high basicity of the parent tertiary phosphine [cf. d(I-I) for $PhMe_2PI_2 = 3.408(5)$ Å].

The nature of compounds formed from the reaction of tertiary phosphines and dihalogens is of considerable current interest.1-6 The principal reason for this is the surprisingly complex and varied solid-state structural chemistry associated with compounds of stoichiometry R₃PX₂. It has been established that such compounds lie close to the structural (ionic/ molecular) borderline, the nature of R and X playing a crucial role in determining the structural nature, and, in some cases, the geometry of the phosphorus atom in the compound formed. For example, Ph_3PX_2 (X = Br^3 or I^1) prepared from diethyl ether solution exhibits a molecular four-co-ordinate charge-transfer structure, Ph₃PX-X, whereas the analogous dichlorine compound adopts a trigonal bipyramidal structure 7 when prepared in the same solvent. When a more basic tertiary phosphine is employed both the dibromine compound [Et₃PBr]Br³ and the dichlorine compound [Prⁿ₃PCl]Cl⁶ are ionic in the solid state and contain long cation-anion interactions as well as interactions between the X^- anion and the δ^+ hydrogens on the aliphatic groups of the tertiary phosphine. In contrast, a crystallographic study of a diiodo compound containing a basic tertiary phosphine, PhMe₂PI₂, revealed that this compound favours the charge-transfer species, PhMe₂PI-I [d(I-I) =3.408(5) Å, the sum of the van der Waals radii for two iodine atoms = 4.3 Å].

Additionally, the nature of the solvent of preparation is important in the structure adopted for certain R_3PX_2 compounds. As previously mentioned, Ph_3PCl_2 , prepared from the stoichiometric reaction of PPh_3 and Cl_2 in diethyl ether solution is trigonal bipyramidal. However, if dichloromethane is used as solvent instead of diethyl ether then the solvated ionic dinuclear compound $[Ph_3PCl \cdots Cl \cdots ClPPh_3]Cl \cdot 2CH_2Cl_2$ is isolated in quantitative yield, with no trigonal bipyramidal product being observed. Clearly, Ph_3PCl_2 lies very close to the ionic/molecular structural borderline, the relative permittivity (polarity) of the solvent determining the nature of the product formed.

Related studies concerning the reactions of interhalogens, IX (X = Br or Cl), with tertiary phosphines have also been reported. An X-ray crystallographic study of the product formed from the reaction of Ph_3P and IBr in diethyl ether solution revealed a molecular charge-transfer species of com-

position $Ph_3PI_{1.29}Br_{0.71}$; the halogen sites of the compound being of dual occupancy, and the compound as a whole being rich in iodine with respect to bromine. Nevertheless, the compound exists predominantly as Ph_3P –I–Br, *i.e.* with the heavier halogen bound directly to the phosphorus atom. There is evidence that the structure of Ph_3PIBr is also solvent dependent; a solution ^{31}P -{H} NMR study of this compound in CDCl₃ revealed a single peak at δ 44.2, identical to that observed for $[Ph_3PI]I$. In contrast, if Ph_3PIBr is dissolved in CD₃CN solution, a single peak at δ 51.7 is observed, identical to that observed for $[Ph_3PBr]Br$. It therefore seems certain that in CDCl₃ Ph_3PIBr exists as $[Ph_3PI]Br$, whereas in CD₃CN solution it exists as $[Ph_3PBr]I$. This phenomenon was rationalised to be due to the susceptibility of the P-I bond to attack by the IBr anion in highly polar solvents.

Despite the current interest in the nature of compounds formed between triorganophosphorus species and dihalogens or interhalogens, reports of such compounds concerning mixed halogen/pseudohalogens are non-existent. We therefore decided to investigate the nature of compounds of stoichiometry R_3PXCN (X = Br or I) because, firstly, nothing is known about their structures and, secondly, we were intrigued to know if the compounds would adopt the charge-transfer structure, a trigonal bipyramidal structure or the ionic structures $[R_3PCN]X$ or $[R_3PX]CN$. Additionally, if an ionic structure was to be adopted by these compounds, it would also be interesting to establish whether the halogen atom or the cyanide moiety would bind directly to the phosphorus atom.

Results and Discussion

The R₃PXCN compounds prepared in this study were synthesised by the direct reaction of stoichiometric quantities of the tertiary phosphine and XCN in diethyl ether solution at room temperature (r.t.), equation (1). The compounds were

$$R_{3}P + XCN \xrightarrow{Et_{2}O, N_{2}} R_{3}PXCN$$
 (1)

prepared in essentially quantitative yield; analytical data are presented in Table 1. The compounds had a tendency to be rich in halogen and deficient in nitrogen; however, after several repeat syntheses and subsequent analyses, satisfactory elem-

Table 1 Analytical data for R₃PXCN^a

Compound	Colour	C	Н	N	X^{b}
[2,4,6-(CH ₃ O) ₃ C ₆ H ₂] ₃ PICN	Yellow	48.4 (49.1)	5.0 (4.8)	1.7(2.0)	18.9 (18.5)
$[2,6-(CH_3O)_2C_6H_3]_3PICN$	Yellow	49.2 (50.4)	4.6 (4.5)	2.0 (2.4)	22.7 (21.3)
(NCCH ₂ CH ₂) ₃ PICN	Brown	33.3 (34.7)	4.1 (3.5)	14.0 (16.2)	38.4 (36.7)
$(C_6H_{11})_3$ PICN	Buff	51.1 (52.7)	7.6 (7.6)	2.8 (3.2)	29.9 (29.3)
(PhCH ₂) ₃ PICN	Cream	57.7 (57.8)	4.8 (4.6)	2.1 (3.1)	27.4 (27.8)
[2,4,6-(CH ₃ O) ₃ C ₆ H ₂] ₃ PBrCN	Beige	52.8 (52.7)	5.5 (5.2)	1.9(2.2)	12.1 (12.5)
$[2,6-(CH_3O)_2C_6H_3]_3PBrCN$	White	54.1 (54.7)	5.0 (4.9)	2.0 (2.6)	15.6 (14.6)
(NCCH ₂ CH ₂) ₃ PBrCN	White	39.9 (40.1)	4.7 (4.0)	17.9 (18.7)	26.9 (26.8)
$(C_6H_{11})_3PBrCN$	White	58.6 (59.1)	8.6 (8.5)	2.5 (3.6)	21.7 (20.7)
(PhCH ₂) ₃ PBrCN	White	63.9 (64.4)	5.8 (5.1)	1.9 (3.4)	20.3 (19.5)

^a Calculated values in parentheses. ^b X = Br or I.

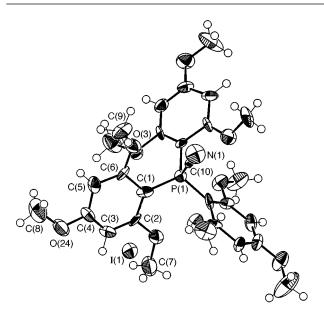


Fig. 1 The crystal structure of ionic $[\{2,4,6-(CH_3O)_3C_6H_2\}_3PCN]I$

ental analysis data were eventually obtained. In the case of the reaction of [2,4,6-(CH₃O)₃C₆H₂]₃P with ICN, recrystallisation of the pale yellow solid from dichloromethane solution at ca. 50 °C produced a large quantity of pale yellow crystals on standing at room temperature for ca. 3 d. The structure of the compound is revealed to be ionic, [{2,4,6-(CH₃O)₃C₆H₂}₃PCN]I, Fig. 1. Selected bond lengths and angles are displayed in Table 2. The structure is interesting for several reasons: firstly, that an ionic structure rather than a molecular trigonal bipyramidal one is revealed. Additionally, unlike the ionic compounds $[R_3PCl]Cl$ $(R = Pr^n \text{ or } Pr^i)^{4,6}$ and $[Et_3PBr]Br,^3$ which contain long cation-anion interactions, no interaction between the cation and anion in [{2,4,6-(CH₃O)₃C₆H₂}₃PCN]I is noted; secondly, and more importantly, the pseudohalogen, CN, is bound directly to the phosphorus atom and not the iodine atom. This compound was prepared from diethyl ether solution. The susceptibility of a P-I bond to nucleophilic attack by an X⁻ anion in ionising solvents has previously been described,⁹ producing $[R_3P-X]I$ (X = Br or Cl). However, in solvents of low polarity (such as diethyl ether) we have previously shown that for a series of compounds the compound containing the heavier halogen bound to the phosphorus atom, R₃PIBr, persists in both the solid state and in solution. Since $[\{2,4,6-(CH_3O)_3C_6H_2\}_3-$ PCNII was prepared from diethyl ether solution, it might have been expected that the iodine atom would bond directly to the phosphorus and an ionic cyanide ion would be exhibited. The reason why the cyanide binds to the phosphorus is not known with certainty but may be related to the fact that the parent tertiary phosphine is very basic. From the infrared spectrum of this material, two bands are observed, one attributable to ionic cyanide, CN⁻, and the other to covalent cyanide (see infrared spectroscopic studies section). The latter band is the more

Table 2 Selected bond lengths (Å) and angles (°) in $[\{2,4,6-(CH_3O)_3-C_6H_2\}_3PCN]I$

N(1)-C(10)	1.19(5)
P(1)-C(1)	1.78(2)
C(1)-P(1)-C(1)	114.8(7)
C(1)-P(1)-C(10)	103.4(9)
C(2)-C(1)-P(1)	131(2)
C(6)-C(1)-P(1)	112(2)
N(1)-C(10)-P(1)	180.0

intense and also the one which corresponds to the crystal structure. Nevertheless, the information gained from infrared studies suggests that the product $[\{2,4,6\text{-}(CH_3O)_3C_6H_2\}_3PI]CN$ may be present in the bulk material. Attempts to obtain single crystals of this material failed however, the only material isolated being $[\{2,4,6\text{-}CH_3O)_3C_6H_2\}_3PCN]I$, corresponding to the crystal structure reported, and in accord with solution $^{31}P\text{-}\{H\}$ NMR studies in CDCl₃.

The carbon–nitrogen distance in $[\{2,4,6\text{-}(\mathrm{CH_3O})_3\mathrm{C}_6\mathrm{H}_2\}_3\text{-PCN}]I$, 1.19(5) Å, is comparable to the cyanide ion, 1.16(2) Å. ¹⁰ Although there are no previous examples of compounds of formula $[\mathrm{R}_3\mathrm{PCN}]\mathrm{X}$, there a few reported species containing PCN bonds, *e.g.* the five-co-ordinated phosphirene ¹¹ 1-(tetrachlorocatecholato-O,O')-1-cyano-2-*tert*-butyl-3-phenyl-1- λ^5 -phosphirene. This compound consists of a highly distorted square pyramidal arrangement at phosphorus with the cyanide carbon atom occupying the apex; $d(\mathrm{C-N})$ is 1.126(6) Å, *i.e.* comparable to that observed for $[\{2,4,6\text{-}(\mathrm{CH_3O})_3\mathrm{C}_6\mathrm{H}_2\}_3\mathrm{PCN}]\mathrm{I}$. In addition, the P–CN bond length of the phosphirene, 1.784(4) Å also compares very well with that of $[\{2,4,6\text{-}(\mathrm{CH_3O})_3\mathrm{C}_6\mathrm{H}_2\}_3\text{-PCN}]\mathrm{I}$, 1.78(2) Å.

During our related studies on compounds of formula R_3PI_2 , we have noted that as the basicity of the parent tertiary phosphine is increased, the d(I-I) of the charge-transfer complex, R_3P-I-I , increases $[d(I-I); Ph_3PI_2, 3.142(4); PhMe_2PI_2, 3.408(5) Å]. Considering the very high basicity of <math>[2,4,6-(CH_3O)_3-C_6H_2]_3P$ and the ionic structure of $[\{2,4,6-(CH_3O)_3-C_6H_2\}_3PCN]I$, it occurred to us that the reaction of diiodine with this tertiary phosphine could produce an adduct in which d(I-I) is lengthened beyond the sum of the van der Waals radius for diiodine, thus producing an ionic tertiary phosphine diiodine compound, $[R_3PI]I$.

Consequently, we reacted equimolar quantities of $[2,4,6-(CH_3O)_3C_6H_2]_3P$ with diiodine in diethyl ether solution, equation (2). The product was prepared in quantitative yield

[C₂₇H₃₃I₂O₉P: Found (Calc.) C, 41.1 (41.2); H, 4.0 (4.3); I, 32.5 (32.3)%; 31 P-{H} NMR, singlet δ 64.3]. Recrystallisation of the yellow powder from dichloromethane solution at *ca.* 50 °C produced a large quantity of yellow crystals on standing at room

Table 3 Selected bond lengths (Å) and angles (°) in [2,4,6-(CH $_3$ O) $_3$ -C $_6$ H $_2$ I $_3$ PI $_2$

I(1)–I(2)	3.3394(5)
I(1)–P(1)	2.482(1)
I(1)-I(2)-P(1)	174.52(5)
C(1)-P(1)-I(1)	105.9(1)
C(19)-P(1)-I(1)	106.2(1)
C(10)-P(1)-I(1)	107.1(1)

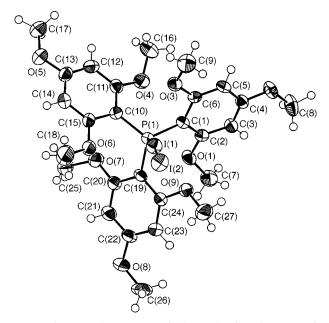


Fig. 2 The crystal structure of the molecular charge-transfer compound $[2,4,6\text{-}(CH_3O)_3C_6H_2]_3PI\text{-}I$ (dichloromethane solvent of crystallisation omitted for clarity)

temperature for ca. 2 d. In fact, the structure is revealed to be a further example of the molecular four-co-ordinate charge-transfer structure, $[2,4,6\text{-}(CH_3O)_3C_6H_2]_3PI\text{-I}\text{-}CH_2Cl_2$, Fig. 2 (the dichloromethane solvent of crystallisation is omitted for clarity), and not the ionic structure $[\{2,4,6\text{-}(CH_3O)_3C_6H_2\}_3\text{-}PCNI]I$, which might have been expected with this very basic tertiary phosphine. Selected bond lengths and angles are displayed in Table 3. The d(I-I) for the compound, 3.3394(5) Å, is also surprisingly short, less than that exhibited by PhMe₂PI₂ [3.408(5) Å] despite the fact that the basicity of $[2,4,6\text{-}(CH_3O)_3C_6H_2]_3P$ is considerably greater than that of PhMe₂P. The reason for this phenomenon is unknown but does illustrate that d(I-I) for any given R_3PI_2 compound is influenced by factors other than the basicity of R_3P , which we previously thought was solely responsible for d(I-I) in R_3PI_2 .

X-Ray powder diffraction studies of the compounds R_3PXCN [R = $(CH_3O)_3C_6H_2$, $(CH_3O)_2C_6H_3$, $NCCH_2CH_2$, C_6H_{11} or PhCH₂; X = Br or I]

Although we have obtained the crystal structure of the ionic compound [{2,4,6-(CH₃O)₃C₆H₂}₃PCN]I, Fig. 1, it occurred to us that other products from the reaction of R₃P and XCN may be present in the solid state, since conceivably, R₃PX₂, [R₃PX]CN, [R₃PCN]X and R₃P(CN)₂ could all, in theory, be present. We therefore recorded the X-ray powder diffraction patterns of all our R₃PXCN compounds and compared them to the corresponding patterns for R₃PX₂. In all cases, the X-ray powder diffraction patterns for R₃PXCN are completely different to those recorded for R₃PX₂, clearly establishing that in the reaction of XCN with tertiary phosphines, no triorganophosphorus dihalogen compound is produced. The compounds R₃PICN and R₃PBrCN, containing identical R groups, were also compared and again no common diffraction lines were

observed. This tentatively suggests that no common species such as R₃P(CN)₂ is present in these compounds. The X-ray powder diffraction patterns of (PhCH₂)₃PX₂ and (PhCH₂)₃-PXCN are compared in Fig. 3.

Solid-state infrared spectroscopic studies

All of the R₃PXCN compounds exhibit two infrared bands at almost identical frequencies, in each case at approximately 2210 and 2070 cm⁻¹. It is known 12 that cyanide exhibits a band in the region 2250-2050 cm⁻¹; the CN stretching band occurs at 2080 cm⁻¹ for ionic cyanides and at 2170–2250 cm⁻¹ for covalent cyanides. Therefore the infrared band at ca. 2070 cm⁻¹ observed here can be assigned to CN in [R₃PX]CN and the band observed at ca. 2210 cm⁻¹ can be assigned to PCN in [R₃PCN]X. Both Goubeau et al. 13 and Miller et al. 14 have recorded the infrared spectrum of P(CN)₃ and assigned bands at 2204 and 2206 cm⁻¹, respectively, to the carbon-nitrogen stretch. Both groups also assigned a band at ca. 600 cm⁻¹ to the phosphorus-carbon stretch. Whilst the infrared spectra of all the R₃PXCN compounds do contain a band at ca. 590 cm⁻¹, which may be assignable to the phosphorus-carbon stretch, P-CN, all of the compounds contain additional P-C bonds due to the tertiary phosphines which also exhibit an infrared band in this region; therefore, the unequivocal assignment of the band at ca. 590 cm⁻¹ in R₃PXCN compounds to v(P-CN) cannot be made with certainty. Interestingly, however, infrared evidence supports the assertion that in the solid state R₃PXCN compounds exist as an approximately stoichiometric mixture of [R₃PX]CN and [R₃PCN]X.

³¹P-{H} NMR solution studies in CDCl₃

With the exception of insoluble (NCCH₂CH₂)₃PXCN, the ³¹P-{H} NMR spectra of all the R₃PXCN compounds, recorded in CDCl₃, exhibit either one or two resonances, i.e. suggesting either one or two phosphorus environments. Where two resonances are observed, one is far more intense than the other, the intensity ratio being ca. 10:1. The chemical shift values and relative intensities of the peaks are listed in Table 4. Previous ^{1,3} ³¹P-{H} NMR studies of the compounds R_3PX_2 (X = Br or I) in CDCl₃ have shown that ionisation occurs to produce [R₃PX]X. It follows that, in solution, R₃PXCN compounds may exist entirely as [R₃PX]CN or [R₃PCN]X (one ³¹P-{H} NMR resonance), or as a mixture of both (two NMR resonances) with one species being dominant. The ³¹P-{H} NMR chemical shifts of the corresponding [R₃PX]X compounds are also listed in Table 4. Therefore, by comparing the chemical shift values of the R₃PXCN compounds with those of the corresponding diiodo and dibromo species, identification of [R₃PI]CN and [R₃PBr]-CN, and thus the cations [R₃PX]⁺, if present, should be straightforward.

The CDCl₃ solutions of the compounds R₃PXCN, Table 4, appear to contain the halogenophosphonium cyanide species, [R₃PX]CN, in addition to one other major component, the minor component giving a resonance very similar to those of the analogous halogenophosphonium cation in [R₃PX]X^{1,3} previously recorded. Interestingly, the ³¹P-{H} NMR spectrum of the [{2,4,6-(CH₃O)₃C₆H₂}₃PCN]I crystals gave a single peak at δ –26.7, *i.e.* identical to the major resonance observed in the $^{31}P-\{H\}$ NMR spectrum of bulk [2,4,6-(CH₃O)₃C₆H₂]₃PICN, Table 4. This clearly shows that this compound exists predominantly as [{2,4,6-(CH₃O)₃C₆H₂}₃PCN]I in CDCl₃ with a small quantity of [{2,4,6-(CH₃O)₃C₆H₂}₃PI]CN also being present. Additionally, the chemical shift value of δ -26.7, corresponding to the cation [{2,4,6-(CH₃O)₃C₆H₂}₃PCN]⁺, is also observed as the major resonance in the ³¹P-{H} NMR spectrum of [2,4,6-(CH₃O)₃C₆H₂]₃PBrCN, Table 4, indicating that this compound also exists predominantly as the cyanophosphonium bromide species, [{2,4,6-(CH₃O)₂C₆H₂}₃PCN]Br, in CDCl₃. Indeed, the major resonances for all of the R₃PICN

Table 4 Solution ³¹P-{H} NMR chemical shifts "of R₃PXN and the corresponding R₃PX, compounds in CDCl₃

Compound	X = I	$[R_3PI]I^{15}$	X = Br	$[R_3PBr]Br^{15}$
[2,4,6-(CH ₃ O) ₃ C ₆ H ₂] ₃ PXCN	$-26.7,^{b}$ -64.7	-64.3	$-26.7,^{b}$ -52.3	-52.2
[2,6-(CH ₃ O) ₂ C ₆ H ₃] ₃ PXCN	$-25.9,^{b}$ -72.6	70.7	$-25.9,^{b}$ -50.0	-50.2
$(C_6H_{11})_3PXCN$	65.4, 47.5 ^b	67.8	105.6, 48.1 ^b	105.5
(PhCH ₂) ₂ PXCN	35.2	73.7	90.2, 34.1 ^b	89.8

^a & Values are given in ppm, all shifts recorded relative to 85% phosphoric acid as standard. ^b More intense peak, intensities ca. 10:1.

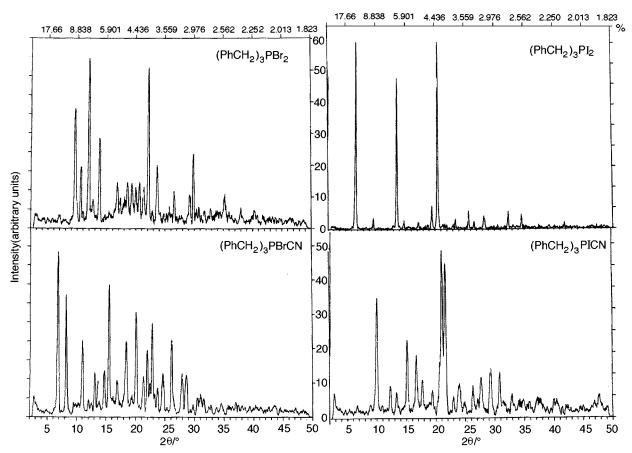


Fig. 3 A comparison of the X-ray powder diffraction patterns of (PhCH₂)₃PX₂ and (PhCH₂)₃PXCN

compounds are almost identical to those exhibited by the corresponding R₃PBrCN compounds, thus illustrating that [R₃PCN]X is the major component for these species in CDCl₃ [and the only component in the case of (PhCH₂)₃PICN]. Although there are no previous reports concerning the assignment of a ³¹P-{H} NMR shift to the species [R₃PCN]X, those reported in this work, Table 4, may be made with confidence based on the evidence described herein. Initially, we were sceptical about assigning NMR shifts of δ –25.9 to –48.1 to [R₃PCN]⁺ since the size and electronegativity of the CN⁻ anion are intermediate between those of the Cl and Br anions. It was therefore thought that the ³¹P-{H} NMR value for [R₃PCN]⁺ would be between those found for the corresponding [R₃PCl]⁺ and [R₃PBr]⁺ species. However, the ³¹P-{H} NMR shifts found for [R₃PCN]X instead lie in the region more commonly associated with R₃P=O compounds. ¹⁶ This observation is consistent with the [R₃PCN]⁺ cation existing as $[R_3P=C=N]^+$ rather than $[R_3P-C\equiv N]^+$ in CDCl₃.

Conclusion

The reaction of XCN (X = Br or I) with R_3P produces two different ionic products, $[R_3PX]CN$ and $[R_3PCN]X$ with no evidence for the existence of R_3PX_2 or $R_3P(CN)_2$. The crystal structure of $[\{2,4,6-(CH_3O)_3C_6H_2\}_3PCN]I$ is reported and is a major component in the reaction of $[2,4,6-(CH_3O)_3C_6H_2]_3P$ with ICN; however, infrared studies on all of the R_3PXCN

compounds indicate that a significant amount of both the cyanotriorganophosphonium halide and the halogenotriorganophosphonium cyanide species are present.

Solution studies of the R_3PXCN compounds in CDCl₃ indicate that all of these species exist predominantly as $[R_3PCN]X$ with a minor component assignable to $[R_3PX]CN$ (approximately 10:1 ratio). The crystal structure of $[2,4,6\text{-}(CH_3O)_3\text{-}C_6H_2]_3PI_2$ has also been described and, in contrast to $[\{2,4,6\text{-}(CH_3O)_3C_6H_2\}_3PCN]I$ which is ionic, is instead a further example of the molecular four-co-ordinate charge-transfer structure, R_3PI –I.

Experimental

All of the compounds reported here are moisture-sensitive, consequently, strictly anaerobic and anhydrous conditions were employed for their synthesis. Any subsequent manipulations were carried out inside a Vacuum Atmospheres HE-493 glovebox. Diethyl ether (BDH) was dried by standing over sodium wire for *ca.* 1 d and subsequently refluxed over CaH₂ in an inert atmosphere and distilled directly into the reaction vessel. Anhydrous CH₂Cl₂ was obtained commercially (Aldrich) and used as received. Tertiary phosphines were obtained commercially (Aldrich) and their purity was confirmed prior to use by ³¹P-{H} NMR spectroscopy. The compounds XCN (X = Br or I) were also obtained commercially (Aldrich) and used as received.

Table 5 Crystallographic data and details of refinement for $[R_3PCN]I$ and R_3PI , $[R = 2,4,6-(CH_3O)_3C_6H_3]$

	$[2,4,6-(CH_3O)_3C_6H_2]_3PCNI$	$[2,4,6-(CH_3O)_3C_6H_2]_3PI_2\cdot CH_2Cl_2$
Formula	$C_{29}H_{33}Cl_2INO_9P$	$C_{28}H_{35}Cl_{2}I_{2}O_{9}P$
M	768.33	871.23
Crystal system	Rhombohedral	Monoclinic
Space group	R3c (no. 161)	P2/c (no. 14)
a/Å	12.445(2)	14.390(2)
b/Å	_	12.445(2)
c/Å	38.863(4)	19.528(3)
β/°	_	90.84(3)
$U/\text{Å}^3$	5212(1)	3496.8(9)
Z	6	4
$D_{\rm c}/{\rm g~cm^{-3}}$	1.469	1.655
F(000)	2328	1720
μ /cm ⁻¹	11.70	20.43
Crystal size/mm	$0.35 \times 0.30 \times 0.20$	$0.35 \times 0.35 \times 0.25$
Maximum 2θ	50.01	49.9
Maximum, minimum transmissions	0.7192, 0.6100	0.6291, 0.5349
Total data measured	2046	6136
No. unique reflections	2046	6136
No. observed reflections $[I > 2.00\sigma(I)]$	1044	6136
No. parameters	142	388
Maximum difference peak, hole/e $Å^{-3}$	0.692, -1.032	1.182, -1.239
Final <i>R</i> indices $[I > 2\sigma(I)]$	0.0475, 0.0917	0.0438, 0.1244
Final R indices (all data)	0.1616, 0.1261	0.0666, 0.1329

All of the R_3 PXCN (X = Br or I) compounds were synthesised in a similar way, the synthesis of [2,4,6-(CH₃O)₃- C_6H_2]₃PICN being typical; [2,4,6-(CH₃O)₃C₆H₂]₃P (2.00 g, 2.60 mmol) was suspended in Et₂O (ca. 75 cm³) and subsequently, ICN (0.398 g, 2.60 mmol) was added. After ca. 4 d, the resultant solid was isolated using standard Schlenk techniques. The solids were then transferred to pre-dried argon-filled ampoules which were flame sealed.

Elemental analyses were performed by the analytical laboratory of this department and the results are presented in Table 1. The X-ray powder diffraction patterns were recorded on a Scintag XRD2000 powder diffractometer using Cu-Kα radiation ($\lambda = 1.5418$ Å). Infrared spectra were recorded as KBr discs on a Perkin-Elmer 783 infrared spectrometer, ³¹P-{H} NMR spectra on a Bruker AC 200 high-resolution multiprobe NMR spectrometer in CDCl₃. All shifts were recorded relative to concentrated phosphoric acid as standard.

Crystallography

Crystals of R_3PI_2 and R_3PICN [R = 2,4,6-(CH₃O)₃C₆H₂] were independently mounted in Lindemann tubes under an atmosphere of dry argon. All measurements were performed on a MAC3 CAD4 (R₃PI₂) or a Rigaku AFC6S (R₃PICN) diffractometer employing graphite-monochromated Mo-Kα radiation $(\lambda = 0.710 69 \text{ Å})$ and ω –20 scans. Both structures were solved by direct methods. Unit cell dimensions were derived from the setting angles of 25 accurately centred reflections. Lorentzpolarisation corrections were applied. Details of the crystallographic measurements and subsequent structure determinations are presented in Table 5. Hydrogen atoms were confined to chemically reasonable positions. Neutral atom scattering factors were taken from ref. 17. Anomalous dispersion effects were taken from ref. 18. The structure determination was performed using SHELXS 86, 19a and the refinement based on F^2 was performed using SHELXL 93 19b crystallographic software packages.

CCDC reference number 186/969.

Acknowledgements

We are grateful to the EPSRC for a research studentship (to J. M. S.).

References

- 1 S. M. Godfrey, D. G. Kelly, A. G. Mackie, C. A. McAuliffe, R. G. Pritchard and S. M. Watson, J. Chem. Soc., Chem. Commun., 1991, 1163; N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. McAuliffe, R. G. Pritchard and P. J. Kobryn, J. Chem. Soc., Dalton Trans., 1993, 101; N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe, R. G. Pritchard and M.-M. Moreno, J. Chem. Soc., Dalton Trans., 1995, 2521.
- 2 W. W. du Mont, M. Bätcher, S. Pohl and W. Saak, Angew. Chem., Int. Ed. Engl., 1987, 26, 921.
- 3 N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Chem. Commun., 1992, 355. 4 F. Ruthe, W. W. du Mont and P. G. Jones, Chem. Commun., 1997,
- 1947.
- 5 M. A. HA Al-Juboori, P. N. Gates and A. S. Muir, J. Chem. Soc., Chem. Commun., 1991, 1270; J. Raman Spectros., 1995, 26, 101.
- 6 S. M Godfrey, C. A. McAuliffe, R. G. Pritchard and J. M. Sheffield, Chem. Commun., 1996, 2521; S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard, J. M. Sheffield and G. M. Thompson, J. Chem. Soc., Dalton Trans., 1997, 4823.
- 7 S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard and J. M. Sheffield, Chem. Commun., 1998, 921.
- 8 N. Bricklebank, S. M. Godfrey, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1993, 2261.
- 9 K. B. Dillon and J. Lincoln, Polyhedron, 1989, 8, 1445.
- 10 N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon Press, Oxford, 1984.
- 11 M. Ehle, O. Wagner, U. Bergsträßer and M. Regitz, Tetrahedron Lett., 1990, 31, 3429.
- 12 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley-Interscience, New York, 4th edn.,
- 13 J. Goubeau, P. Haeberle and H. Ulmer, Z. Anorg. Allg. Chem., 1961, **311**, 110.
- 14 F. A. Miller, S. G. Franks and O. Ala, Spectrochim. Acta, 1965, 21,
- 15 J. M. Sheffield, Ph.D. Thesis, UMIST, 1997.
- 16 R. V. Parish, NMR, NQR, EPR and Mössbauer Spectroscopy in Inorganic Chemistry, Ellis Horwood, London, 1990.
- 17 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, Table 2.2 A.
- 18 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, Table 2.3.1.
- 19 (a) G. M. Sheldrick, SHELXS 86, University of Göttingen, 1986; (b) G. M. Sheldrick, SHELXL 93, University of Göttingen, 1993.

Received 29th January 1998; Paper 8/00795K